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Construction of periodic solutions of quaslilinear non-self-contained systems
with one degree of freedom, was investigated in [1 and 2]. 1In [1] the case
of simple roots of amplitude equations was consldered together with the case
of a double root when the solution could be expanded into a series in inte-
gral powers of u . In [2] the case of a double root 1s lnvestligated in more
detail including expansions of solutions into series in p':, In the present
paper, the case of arbitrary multiple roots for non-self-contained systems

is reduced to the corresponding case for self-contained systems, which sim-
plifies computations.

1. Let us consider a quasi-linear non-self-contained system
&+ miz=f{)+ BF @z, 2,1 (1.1)

Function F(t, x, x°, u) is analytic in x, x* and u 1in some region of
variation of x and x*, with O < < o (u 1is a small positive paraheter).
Also, F(t, x, x*, p) and J(t) are continuous periodic functions of ¢ with
the period 2p and harmonics of the mth order where m 1s an integer, are
absent from J(t)

When u = O , the baslc system has a general solution

xo(t) = @ (1) -+ Ay cos mt + Bym™ sin me (1.2)
periodic In ¢ and dependent on two arbitrary constants 4o and B

We shall seek periodic solutions of (1.1) using Poincaré's method. Assume
the 1nitial conditilons

z(0) =@ (0) + Ao+ B, 2 (0) =¢ (0)+ By + v (1.3)

Solution of (1.1) 1s an analytic function of Ao+ 8, Bo+ y and u ,
consequently, 1t can be written in the form

B [0.0]
w (1) =@ (1) + (Ao + B)cosmt - O:L_Ysinmtﬁ— E Calt, Ao+ B, Bo+1)p™ (1.4)

n=1

or, on expanding
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By -
x{t) - g {t) 4 {1p+ B)eos ml 4 ";;; Tsm ard -
fo]
. . OC, (1) ac, (1) 1 8, -
Cp {1y - Tt ety 1 Uy ), " (1.
+ "§l[ n i a;l() B + dBo T 4 B 6.’1(1"2 e .]l“‘ A ))
Punctions ¢,(t) are given by
1
i
Cpll) == _??;SH" {(ysinm {f — )t {1.6}
where H,{t)} are 01 g1
“1F
) == H! ( dl*""‘) B=y=p=0

dF/du 1s a complete partial differential of F(t, », x*, p) with respect
to u . Values of first three #,{t) are given in thelr expanded form in[i].

Conditions of periodicity which, with initial conditions taken into
account,can be given as

z (2n) = @ (0) -+ A, + B, @ (2n) =@ (0 + By +v (1.7)
yield, ‘together with (1.4), the following relationships:

o oo
S Cafen, do+8, Bobnpn =0, ) Cx'(27, b+, Bot+1pt=0 (18)

nw=y n=1
from which we can find the following equations of fundamental amplitudes 4,
and B
° Cy (2, Aq, By) = O, Cy (2, Ag, Bo) = 0 (1.9)

together with equations giving the parameters g and y as implieit func-
tions of u . Regrouping the terms in these eguationsz so as to obtalin homo-
genecus polynomials, we obtain

aCy aCy 1 8%, 820, ‘L 820
‘5A‘—°B+§§; Y+ Capt + 7 AR Bé_;-aAgBBg By -+ 3 BBy 12+
ac aCy . ’ ‘
+52%Bp+m7u+cspz+...m() (1.10)
and analogously
8Cy 8Cy . i 8¢y 8y i a0y .
A Bt SRy Ot T g Bt sa,em, Tt T T
aCy acy .
— v ) 1.4
-+ 94, Bu 1+ 3B, T -4 C'u? - { ¥
In case of simple roots of amplitude equations (1.9), functional determi-
nant . .
PO o s M 2 B (t.12)
éx1i3 383 339 3Ao

is not equal to zero, from which it follows that 8 and ¢ can be repre-
sented by' series in integral powers of u

[ee) s
B= 2] Auu™ 7= Bap® (1.43)

n=1 n=1

Coefficilents 4, and 5, of these series can be determined consecutlvely
from an infinite system of pairs of linear equations possessing & common
determinant equal to 2, . Eguations for the first three coefficlents A4,
and B, &re given in [1}].

2., We shall now consider the case of multiple roots of (1.9) in more
detail, 'The necessary condition for multiple roots to exist, 1is

D,=0 (2.1)
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Each of the equations of (1.9) defines some curve on the plane of ampli-
tudes 4o and By . Polnts of intersection of these curves are the roots of
our equations. Double roots correspond to double points of intersection,
triple roots to triple points, etec., etec.

We shall first investigate the points, at which simple tangency of two
curves occurs. Differentiating (1.9) with respect to 4o and assuming that
Bo 1s an implicit function of 4, , we obtain

aC, dC; dBy 0 aCy” acy dBo__
04, 0By dAy — 7 A, 0By dAq —
Since at the poilnts of contact directlon cosines of the tangents coincide,
it follows that at these points D,= 0
Second differentlation with respect to 4o , ylelds

POy DO 4By | POy (B 20 B
9 A2 T “9Ay 0B, dAg 9By \dA, 9By dAg 23y
92Cy 2°Cy dBy | 0°Cy (dBa\! | OC{ d*By _ (2:3)
94¢ 234,08, a4, T GBg (EZ) “oBg dAE —

Points of contact at which dpB,/d4o and dQBO/BAoa coinclde, represent
triple roots of Equations (1.9). At these points

V62C1 6201 dBo 6201 (dBo >2 aCl

Y e 8A,0B, dA 9Bg® \d4, dB ‘
Dy=| 250 000 B0 T M0 ‘i=0 (2.4

6201 02C, k] dBo 02C4 ((!El >2 001

94 T 234,08, 4, T 9Bs \dd, 3B,

which is the necessary condition of existence of triple roots of (1.9), and
which supplements (2.1). Condition (2.4) can be represented in various ways,
which depend on the form taken by the derivative dB,/ddo. We can obtain
dRo/dAo either from the first or from the second equation of (2.2), or from
both. At the same time we shall assume, that in the corresponding cases
elther one or both of the following inequalitles hold

aC, aCy’
3B, T 0 a8, +

Coridition of triplicity of the roots of amplitude equations can be obtained
in another form, 1f Equations (1.9) are differentiated twice with respect to
Bo 5 with Ay assumed to be an implicit function of B, . We shall have then,
in place of (2.4) a condition, in which differentiation with respect to Bo
replaces the differentiation with respect to 4o , and vice-versa, and
dAo /dBo I‘eplaces dBo/dAo .

Therefore, provided that at least one of the first partial derivatives of
¢, and (; * wilth respect to 4o and By 1s different from zero, conditions
of existence of double roots of amplitude equations (1.9) will be: fulfilment
of condition (2.1) and nonfulfilment of condition (2.4), or of another con-
ditien possessing at least one analogous aspect.

Let us consider some particular cases. Assume, that one of the curves
defined by (1.9) has double branches, e.g.

Cy (Ag, Bg) = 1,* (Ag, Bo) fa (Ao, Bo) == 0 (2.5)

Then, at any point of intersection of the double branch with the curve
given by (,°(40, Bo) = O , corresponds to multiple roots of the system. At
the same time condition (2.1) always holds. In the present case however,

(2.1) 1s not a condition of tangency of the curves. The latter condition
18 expressed in the form

3fr 9Cy  dfr aCy .
Dy* =54, oB; 3B, 04y = (2.6)

Consequently, lack of fulfilment of (2.6) i1s the condition for the roots
of (1.9) to be double for the given double branch.
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Let us consider another particular case. Let our amplitude equations have
the form .
Ci(de) =0, Cy (By) =0 (2.7

This represents two orthogonal straight lines parallel to the coordinate
axes on the AqBFo plane, They intersect at a double point, provided one of
the equations (2.7), say the first one, has double roots

a0, 0 92, \ acy N .
e e ) S (2.8)

The fulfilment of (2.1) follows from these conditions, and they are the

conditions of existence of double roots.

3. Parameters g and vy can be found from (1.8) with (1.9}, or from
expanded equations- (1.10) and (1.11). Let us transform these equations,
assuming that
0 Ly 3.1)
3B, T

Second relation of (1.8) gives, together with {1.9), B, +v as an ana-
lytic function of Ap+8 and p

Bty = f*(do+ 3w

Inserting this into the first relation of (1.8) and dividing by u , we
cbtain

o] o0
2 Cnldo+B, /* (Ao B wIn" = 3 Qu(do Bt =0 (3.2)
n=1 =1

We easlily see, that @,= ¢,{4e, Bo) = O . Regrouping the terms so as to
obtain homogeneous polynomials, we obtain (3.2) in an expanded form

dQy 1 d d
D@ = d—% B Qe+ dfié B+ dﬁ: B+ Qap® -+
1 g8 1 4 i .
g T B a B+ ot Qi o =0 (3:3)

where

dd, 84, 0B, dA,

First two derlvatives of ¢, with respect to 4, are

GO (B B 90y @5
a4, =P\%B, ) 0 dag =P\7E,

To obtain the coefficients of §, (n = 2, 3,...} we shall first find vy
from (l.llz as a double series in 8 and u . This is always possible by
virtue of {3.1). Regrouping the terms of this expansion in the same manner
as (3.3), we find

dP 1 d*P dPy
T=‘ggj:“B+qu+"2—mffﬁz+mBu+Paw+
1 &P 1 &P dPg
=2 1 il —J g Pt 3.8
+ 5 day B+ gag Bt gg, B Pet (3.6)

Let us first find dP,/d4, by inserting y 1into (1.11) and collecting
similar terms. Expansion obtained in terms 8 and u 1s ldentically equal
to zero. Equating the coefficlent of B to zero, ylelds

dP; 6Cy ac,"

dQyn _ 8Q, 8Qqn dBy (3.4)

a4, 3B, T 34, =0
from which we obtain
dp; 8¢y (ac,. >_1 - (d_B,‘L> 3.7y
dAp - a4, aBy dA4p % "

where an asterisk denotes a magnitude taken at the tangent point of
0:{4o, Bo) =0 and 0,°*(4o, Bo) = O .

To determine the coefficients of P, (n = 2, 3,...) we proceed in a simllar
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manner as for finding dP,/d4, , and we obtain

acy’
P o
2 aBQ +CZ =0
ac, 1 92Cy aCy . a2 Qy
P3”5F0—+_2—'P226302+P2 6B0+Cs=0 ('3'8)

acy’ 920y acy 1 a3Cy _}___ 83:Cy 0Cs .
P+ 3B, +P3<P2'5§52-+—c’:"§?7> + 5 P g T3 PP gpg +Pegp, TOC=0

Inserting vy from (3.6} into {1.10), regrouping the terms and comparing
the coefficients in the resulting equation with those of (3.3), we find

9C: 9, | 1 . ¥C 3Cs | ,
Q2=P2m+02, Qs=:P35"B’_O‘ + Tpgz ""““"6802 +PzaBo *-’['Ca (3.9)

aC: 9°Cy |, 9C, 1 oC, | 1 . 0%, 3Cs
QQ::P&[E +P8<P2 3Bg +a_B'(_)'> +'_6‘P23 aB_"os +'2‘P2‘ aB—oz"‘!"’Pz 6B'D’+C4

Introducing now

601 . 301' 301 aCl . 0
A1=5§";Ca——53—002, Ay = 34, Cz'—"_aAO C, (3.10)
and using Formulas (3.8) for the coefficients of P, , we finally have
601' )“1
= — —_— 3.41)
Q2 Ay ( 3B, (3.41)

aCy \-3[ 1 (3201 0Cy _ 9%y a0 >C.2
Qﬂ"’( OBO) [‘2‘ 9B 9B, 9By 8By / * T

aCy 8Cy _ 9Cy 8C: \9Cy . (QQ_ aCs )( acy 2} .
o (E 8B, = 9B, 3B, )880 Co'+\aBy O3By )\ 3By ) (3.12)

Coefficients (. can be found directly from (3.9) and (3.8) rather than by
means of a general formula.

Equation (3.3) possesses a structure simllar to that of a corresponding
equation for the case of self-contained system with one degree of freedom.
Therefore the analysis of various cases of double and triple roots of ampli~-
tude equation of the self-contained system [3] can be applied in 1its entirety
to non-self-contained systems.

Let us put p = 0 in the left-hand side of (3,.3). This results in

d 1 d2 1 48
®(8,0) = T B+ vk B T B (3.43)

By the Welerstrass theorem for implicit functions, number of branches of
the parameter 8 given by (3.3) is equal to the smallest exponent in the
expansion of ¢(g, O0) in g which, in turn, is equal to the multiplicity of
the roots of amplitude equations. If the multiplilcity of roots is equal to
r , then all of r branches of 8 are glven by convergent serles in integral
powers of p”k,where k may be equal to any integer between 1 and r
inclusive, At the same time, these roots of amplitude equations may possess
expansions of g in various fractional powers of 4 , but the sum of dis-
tinet % cannot exceed r .

Hence, g and vy are given by

o0 oo
Be= D) A, ¥ = 3 B"* (3.14)

n=1 n==1

Form and the coefficients of the serles for g are found from (3.3),
taking into accountt the multiplicity of roots of amplitude equations. For
example, in the case of double roots and @,# O , we have k « 2 , Coeffi~
cient Ai is found from the quadratic equation
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1 (12Q1 .
_Q.WA,/‘L;_ Q;=0 etc. (3.10)

Form of the serles for vy - 1s the same as of that for 8 . To find the
coefficients B, ,, the value of g from (3.14) should be inserted into
(3.6) and all ité terms expanded in powers of Uk . Then, the corresponding
coefficients of this seriles and of the series glven by the second formula of
(3.14) are equated, giving for # = 2 ,

dP, B d Py . L (I‘-’P,_ e 1 p
By, =34, 4w 1= g, bl gy e P
d Py [ d*Py _L AP, ‘ dP,
By, = ga, Ay, 1 gag Ayt w5 gas Wt aa,
(I.P] (ZZP] 1. 1 (Z3P] " )
Ba= e A g (A, + g A2) + g
dP; 1 d2P, o .
+ dTo A, ’}‘ —2— dAy? /11'2' -b- Py ("-“])
and for k& = 3
dP] dPl _'!— (ZZP] 5
Bi,=ga, Ave  Bu= gy Ant m a2
ap, d2p, 1 d3Py
By = J/To- Ay -+ W A,/‘,"A,’,s -+ 3 W ;1,’,33 P

dpP, d?P, 1 . 1 d3pP, . _LdP.l { A7
Boy= Ty Ao+ i (A + 7 42) g Tag Agt b g Ay G47)

If the inequality 3¢, /34, # 0 holds as well as (3.1), then the expres-
sion for Ao+ 8 can be obtained from the second relation of (1.8) with (1.9)
taken Into account after which it can be 1lnserted into the first relation of
(1.8). This will glve us an equation for vy , whose form will be similar to
that of (3.3) for B . Rest of the computation remains analogous. In this
case, the coefficlents B,y can be found independently from 4,; and the
formulas defining them wifl exhiblt a symmetry with the corresponding formu-
las for An;k- For example, A; proportional to a,, while B; w1ll be pro-.
portional to A, .

§,.. As an example, we shall consider the Duffing problem in quasi-linear
formulation. We have the harmonic equation

4+ z=p(ex+ bs®+ vcost+ Ahsing) (4.1)
Let us write the fundamental amplitude equatlons
Cy(2n) = —a [A+ aBy 4 308y (Ag2 + Bet)] = 0
Cy (2n) = nu [v + adg 4+ 3/pAg (A2 + Bl = 0

We shall seek the perlodic solutlons corresponding to multiple roots of
these equations. Constructing the determinant D, and equating 1t to zero,

we obtaln
Dy = 7% [a + ¥b (Ag + B [a + ¥ (Ag* + Byl = 0

Equating the first factor to zero we find that y = 0O and XA = 0 ., This
case 1s of no special Interest, as the system becomes self-contained.

Equating the second factor to zero, we obtain the followlng relation
between the coefficients of (4.1):

1643 -+ 816 (v + A?) = 0 (4.2)

At the same time, the amplitudes 4, and p, assume the values
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3

PR By = — o (4.3)
for which the determinant DJ_,# O . Consequently, the above roots of ampli-
tude equations are double. Since (,# O, iit follows that the parameters

g and vy can be expanded in powers of u® and periodic solutions of (4.1)
are represented by series of the form

s () = x0 (1) F wley, () + pe () + . (4.4)

Let us find the coeffilcilent Ay from (3.15) and" By from the first equa-
tion of (3.16). Then, the function

zy, () = F (—96a)™/(v cos ¢ + A sin 1) (4.5)

Hence, if @ < 0 and (4.2) holds,.then two real periodic solutions exist,
which can be expanded in terms of u% . Coefficlents x,{(t) and xi(t)
have been found, and the coefficent x,(t) is

7 27 b .
21t = zg5 (veost - hsin () - oep —5 [v (v — 3A%) cos 3L + A (3v2 — A2 sin 3] (4.6)

Ay = —

&f<

3 A
a
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