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Construction of periodic solutions of quaslllnear non-self-contained systems 
with one degree of freedom, was Investigated ln cl and 23. In [I] the case 
of simple roots of amplitude equations was considered together with the case 
of a double root when the solution could be expanded Into a series In lnte- 
gral powers of u . In [2] the case of a double root Is Investigated In more 
detail Including expansions of solutions Into series In i~'lp. In the present 
paper, the case of arbitrary multiple roots for non-self-contained systems 
Is reduced to the corresponding case for self-contained systems, which slm- 
pllfles computations. 

1. Let us consider a quasi-linear non-self-contained system 

j: + m2x = f (t) + pF (t, x, x’, p) (1.1) 

Function F(t, x x* s analytic In X, X* and p In some region of 
variation of r an; X:: v) 1 

F(t, X, 3. 
with 0 zz p < b (p Is a small positive par&ter). 

Also, , p) an; J(t) are continuous periodic functions of t with 
the period 2c and harmonics of the mth order where m Is an Integer, are 
absent from f(t) 

When ~'0, the basic system has a general solution 

z+(t) = cp (t) + A, co.9 mt + Borne1 sin mt (1.2) 

periodic In t and dependent on two arbitrary constants A0 and B. 

We shall seek periodic solutions of (1.1) using Polncare's method. Assume 
the Initial conditions 

r (0) = 'p (0) + A, + B* x'(0) =cp'(O) + &J+y (1.3) 

Solution of (1.1) Is an analytic function of Ao+ 6, BO+ y and p , 
consequently, it can be written In the form 

00 
BO+T 

x(t) = cp (t) + (A0 + 3) ~0s mt + 7 sin mt + 2 G (4 A0 + P, BO + T) pn (1.4) 
TZ=l 

orJ on expanding 
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Functions C,(t) are given by 
i 

c, (I) I= f 5 Hn (s’) sin nz- (” - L')flL" 

where 3, (t) 8re 

(1.6) 

W/&J ia 8 complete partial dTfferentla1 of F(t, X, x*, p) with respect 
to $.I ‘ Value% of first three X,(t) are given in their expanded form inElf. 

Conditiona of periodialty which, with initial conditions taken into 
account,can be given as 

x (2n) = a, (0) -I- 4 + p, z* (24 = ‘p’ (0) + f3, + y (1.7) 

yield, ,together with (1.4), the following relationships: 
Q) m 

f'rom which we can find the followfng equations of fundamental amplitude% & 
and Bo 

c, m-b &r Rl) = 0, C,'(2n,A,,B,) =-t 0 (1.9) 

together with equations giving the parameters fl and y as implicit func- 
tions of v l Regrouping the terms In these equations so as to obtain homo- 
geneous pOlynomi818, we obtain 

In aase of simple roots of amplitude equations (1+9), functional determl- 
nant ac, (x1- ac, ac,’ 

&=ait,gq- -__ afh aAs (1.12)> 

is not equal to zero, from which it follows that 8 and f Can be repre- 
sented byi series in integral powers of p 

(1.13) 

Coefficients A. and 3, of these series can be determined consecutively 
from %n infinite %y%tem of pairs of linear eqUat%ons poSSeS%ing 8‘Common 
determinant equal to D 
and & are given in cl) .* 

Equations for the firat three coefflclents R, 

a. We Shall now consider the case of multiple roots of (1.9) in more 
detail. The necessary condition for multiple roots to exist, is 

D1== 0 {2.1)3 
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Each of the equations of (1.9) defines some curve on the Plane of ampll- 
tudes A0 and B. . Points of Intersection of these curves are the roots of 
our equations. Double roots correspond to double points of Intersection, 
triple roots to triple points, etc., etc. 

We shall first Investigate the points, at which simple tangency of two 
curves occurs. Differentiating (1.9) with respect to A,, and assumlng that 
&, Is an lmpllclt function of A0 , we obtain 

(2.2) 

Since at the points of contact direction cosines of the tangents coincide, 
It follows that at these points D,= 0 ; 

Second differentiation with respect to A0 , yields 

(2.3) 

Points of contact at which dBc/dAa and daBo/dAaa coincide, represent 
triple roots of Equations (1.9). At these points 

acl 
ax 

aCl’ = 
0 (2.4) 

aB0 

which Is the necessary condition of existence of triple roots of (1.9), and 
which supplements (2.1). Condition (2.4) can be represented In various ways, 
which depend on the form taken by the derivative dBo/dAo . We can obtain 
d&,/dA,, either from the first or from the second equation of (2.2), or from 
both. At the same time we shall assume, that In the corresponding cases 
either one or both of the following Inequalities hold 

acl 
aB#J J;O* 

ac; 
ano +O 

Cotidltlon of trlpllcity of the roots of amplitude equations can be obtain& 
In another form, If Equations (1.9) are differentiated twice with respect to 

assumed to be an Implicit function of & We shall have then, 
a condition, In which differentiation \;lth respect to Bc 

replaces the dlfferentlatlon with respect to A,, , and vice-versa, and 
dA.,/dB,, replaces dB,/dAo . 

Therefore, provided that at least one of the first partial derivatives of 
C, and C, l with respect to A0 and Bd Is different from zero, conditions 
of existence of double roots of amplitude equations (1.9) will be: fulfllment 
of condition (2.1) and nonfulfllment of condition (2.4), or of another con- 
dition possessing at least one analogous aspect. 

Let us consider some particular cases. 
defined by (1.9) has double branches, e.g. 

Assume, that one of the curves 

C, (A,,, B,) = II2 (A,, B,) fa (A,, Bo) = 0 (2.5) 

Then, at any point of Intersection of the double branch with the curve 
given by C1*(Aor Bo) - 0 corresponds to multiple roots of the system. At 
the same time condition (2:l) always holds. In the present case however, 
(2.1) Is not a condition of tangency of the curves. The latter condition 
Is expressed In the form 

(Z.ci) 

Consequently, lack of fulfllment of (2.6) Is the condition for the roots 
of (1.9) to be double for the given double branch. 
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Let us consider another particular case. 
the form 

Let our amplitude equations have 

C,,(&l) = 0, C,‘fB,) = 0 (2.7) 

This represents two orthogonal straight lines parallel to the coordinate 

~~"e"e~~att:~nsA9~~7P~a~~~ the first one, has double roots 
They intersect at a double point, provided one of 

ac, SC, 
Y--- -_=c), - a* *(’ J; 0, 

K,' 
- 

d.& iI?& +‘I (‘23) 

The fulfilment of (2.1) follows from these conditions, and they are the 
conditions of existence of double roots. 

exp&ded equations. (1.10) and (1.11). 
Parameters @ and y can be found from (1.8) with (l.Y), OF from 

Let us transform these equations, 
assuming that 

dC1 
i3Bo +=’ 

(3.1) 

Second relation of (1.8) gives, together with (1.9), B0 +y as an ana- 
lytic function of A0 + 6 and IJ 

Inserting this Into the first relation of (1.8) and dividing by u , we 
obtaln 

We easily see, that P,- C,(Ao, &) J 0 . Regrouping the terms so as to 
obtain.homogeneous polynomials, we obtain (3.2) in an expanded form 

where 
dQ, BQn 
z&-=x&- 

aQn d%o -- 
+ a%@ dA& 

First two derivatives of 0, with respect to A~ are 

dQs - -_ .Lls (g&)-‘, 
dAo 

(3.4) 

(3.5) 

To obtain the coefficients of Q, (n = 2, 3,...) we shall first find y 
from (1.11 as a double series in ,g and u . 

t 
This is always possible by 

virtue of 3.1). 
as (3.3), we find 

Regrouping the terms of this expansion In the same manner 

(3.6) 

Let ua first find dp,/dAo by inserting Y into (1.11) and collecting 
similar terms. Expansion obtalned In terms s 
to zero. Equating the coefficient of s 

and u is identically equal 
to zero, yields 

dPI dc,’ a&’ -- 
dA,, i?& -+m=’ 

from which we obtain 
dPs 
X&= 

(3.7) 

where an asterisk denotes a magnitude taken at the tangent point of 
‘.?,(&,r BO) - 0 and C~*@ot Bo) - 0 . 

To determ%ne the coefficients of P, (n = 2, 3,. . .) we proceed in a Sindlm 
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manner as for finding dF,/d& , and we obtain 

Inserting y from (3.6) into (l.lO), regrouping the terms and comparing 
the coefficients in the resulting equation with those of (3.3), we find 

Introducing now 

ac1 ac; ac, ac, -_ Al-a*o Ca’-_CCz, AZ= xc2 - aAo c2 

and using Formulas (3.8) for the coefficients of P, , we finally have 

(3.10) 

(3.11) 

ac, ac,' 
_---A 

aBo aBo 

Coefficients Q4 can be found directly from (3.9) and (3.8) rather than by 
means of a general formula. 

Equation (3.3) possesses a structure similar to that of a corresponding 
equation for the case,of self-contained system with one degree of freedom. 
Therefore the analysis of various cases of double and triple roots ot ampli- 
tude equation of the self-contained system [33 can be applied in Its entirety 
to non-self-contained systems. 

Let us put n = 0 in the left-hand side of (3.3). This results in 

(3.13) 

By the Welerstrass theorem for implicit functions, number of branches of 
the parameter 8 given by (3.3) la equal to the smallest exponent in the 
expansion of @(g, 0) In g which, In turn, Is equal to the multiplicity of 
the roots of amplitude equations. Xf the multiplicity of roots is equal to 
r , then all of r branches of 6 are given by convergent series in integral 
powers of $/k, where k may be equal to any integer between 1 and r 
inclusive. At the same time, these roots of amplitude equations may possess 
expansions of g In various fractional powers of u , but the sum of dls- 
tlnct k cannot exceed r . 

Hence * B and y are given by 

P G= $ A,/,J@~ , (3.14) 
n=1 n===l 

Form and the coefficients of the series for 0 are found from (3.3), 
taking into account the multiplicity of roots of amplitude equationa. For 
example, in the case of double roota and Qn# 0 , we have k - 2 . Coeffl- 
cient R+ la found from the quadratic equation 
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1 IIZQ, 
--~1,,,2+ Q2 = 0 etc. 2 dA,? (:1. 15) 

Form of the series for y Is the same as of that for R . To find the 
coefficients ljnh-, the value of R from (3.14) should be Inserted into 
(3.6) and all Its terms expanded In powers of Pllk . Then, the corresponding 
coefficients of this serles and of the series given by the second formula of 
(3.14) are equated, giving for Ir - 2 , 

and for I( = 3 

If the Inequality 
sion for A,, + _g 

aC,'/&4, #O holds as well as (3.1), then the expres- 
can be obtained from the second relation of (1.8) with (1.9) 

taken Into account after which It can be Inserted Into the first relation of 
(1.8). This will glve us an equation for y 
that of (3.3) for 

, whose form will be similar to 
Rest of the computation remains analogous. In this 

case, the coefflcleits B,k can be found Independently from-&k and the 
formulas defining them WI 1 exhibit a symmetry with the corresponding formu- i 
las for A,,%. For example, A*' proportional to Al, while B*a will be pro-. 
portlonal to Aa . 

4 As an example, 
form;iatlon. 

we shall consider the Luffing problem In quasl-linear 
We have the harmonic equation 

. . 
I + I = ~(UZ + bZ + Y cos t + h sin t) 

Let us write the fundamental amplltude equations 

(4.1) 

c, ('n) = - 31 [h + aB, + V4bB, (/lo2 + B,‘)] = 0 

C,’ (2~) = n [Y + aA, + SlrbA, (A,$’ + Bo2)] = 0 

We shall seek the periodic solutions corresponding to multiple roots of 
these equations. Constructing the determinant D, and equating It to zero, 
we obtain 

D, = z' [a + 3/ab (A$ + Bo2)] [a + @/,b (A,2 + B,,?)] = 0 

Equating the first factor to zero we find that v - 0 and X = 0 . This 
case Is of no special Interest, as the system becomes self-contained. 

Equating the second factor to zero, we obtain the following relation 
between the coefficients of (4.1): 

16a3 + 81b (Y' + h") = 0 (4.2) 

At the same time, the amplltudes A0 and & assume the values 
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(4.3) 

for which the determinant Da# 0 . Consequently, the above roots of ampll- 
tude equations are double. Since 4a# 0, it follows that the parameters 
a and y can be expanded in powers of p* and periodic solutions of (4.1) 
are represented by series of the form 

J (4 = Jo (1) + t+“‘,, (t) + p”1 (1) + . . . (4.4) 

Let us find the coefficient A 
tion of (3.16). Then, the function* 

from (3.15) and- B+ from the first equa- 

rlio (t) = T (-96n)-"?(v cos t + h sin 1) (4.5) 

Hence, If a < 0 and (4.2) holds, then two real periodic solutions exist, 
which can be expanded In terms of pa * Coefficients 
have been found, and the coefflcent -xl(t) Is 

xc(t) and r+(t) 

21 (I) = *&(vcos 1 + J. sill I)+- ~$[v(v~-~3h~)cos 3t + h(3v2- lb2) sin311 (4.G) 
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